Introduction
Herd lameness problems have long been associated with poor cow comfort in intensively managed systems for dairy and beef production.

For the development of claw horn lesions, such as sole ulcers and white line disease, increased mobility of the third phalanx within the claw horn capsule appears to be part of the pathogenesis. Time spent standing and loading the claws with the weight of the animal, and the surface that the sole is exposed to during this time appear to be the two most significant environmental factors exacerbating the severity of the subsequent lesion that forms, and the degree of lameness that is associated with the problem.

For the development of infectious lesions of the hoof, such as digital dermatitis, surface hygiene of the standing and walking surfaces that the cows are exposed to appear to influence the extent of the problem.

This document outlines the areas of cow comfort that require investigation in order to understand the role of the environment in herd lameness problems.

Factors Influencing Daily Standing Time
The mature lactating dairy cow appears to require a minimum of 12 hours of rest per day on a comfortable surface. Lying times less than around 10 hours per day put the animal at risk for lameness problems. Increased time spent standing results from the following issues:

1. Poor Stall Comfort
 From the cow’s perspective, a lying surface becomes less desirable if it lacks cushion, if the resting area is too confined and does not provide sufficient space for the imprint of the cow, and where there are obstructions to the lunge and bob movement of the cow’s head, and the forward thrust of the forelimb as the cow rises. Under these circumstances normal non-lame animals may rest for only 10 hours per day or less.

 Table 1 suggests appropriate free stall dimensions for different sizes of dairy cow and these should be used as guidelines for stall assessment.

 Even if the stall is desirable, stocking density will influence stall access. While some degree of over-stocking may be compensated for (estimated up to 1.1-1.2 cows per stall), over-stocking to excess will reduce lying times and impact subordinate cows, making them more susceptible to lameness problems.

For lame cows, the stall surface is the key to comfort and rest. The impact of the foot on a firm flat surface during rising and lying movements leads

<table>
<thead>
<tr>
<th>Stall Dimension (in)</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>1600</th>
<th>1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total stall length facing a wall</td>
<td>96</td>
<td>96</td>
<td>108</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Head-to-head platform length</td>
<td>192</td>
<td>192</td>
<td>204</td>
<td>204</td>
<td>216</td>
</tr>
<tr>
<td>Distance from rear curb to brisket locator</td>
<td>64</td>
<td>66</td>
<td>68</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>Center-to-center stall divider placement (stall width)</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>Height of brisket locator above stall surface</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Height of upper edge of bottom divider rail above stall surface</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Height below neck rail</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Horizontal distance between rear edge of neck rail and rear curb</td>
<td>64</td>
<td>66</td>
<td>68</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>Rear curb height</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Rear curb width (loose bedded stalls)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
to increased time spent standing in the stall and less time lying in lame cows. In contrast, deep loose bedding, such as sand, provides the foot cushion and traction needed during these movements and allows the cow to rise and lie down more easily. This provides the opportunity for lame cows to rest and recuperate.

Lame cows must therefore recover in sand bedded stalls, or on a deep bedded pack. Failure to provide for this will result in an increase in the duration of lame events and failure of the hoof lesion to resolve over time.

2. Poor Transitioning

The structure of the claw is weakened around calving time by the action of enzymes on the suspensory apparatus of the third phalanx, probably triggered by hormones such as relaxin. Poor stall comfort, increased numbers of pen moves, over-stocking and competition between heifers and mature cows may lead to an exacerbation of the natural increase in standing time that inevitably occurs around calving time.

3. Prolonged Milking Times

It is recommended that all cows are returned to their pen within 45 minutes to 1 hour of departure for milking. Longer milker times, resulting from poor throughput and/or inadequately sized milking facilities compared to group sizes, in excess of 3 hours per day will stress the cow’s time budget and erode the time available for rest.

4. Heat Stress

It is common to see more lameness problems in the late summer months in North America, believed to be due to a combination of increased risk for sub-acute ruminal acidosis, and an increase in standing behavior. Cows that are heat stressed prefer to stand in an attempt to improve heat loss and even under conditions of mild to moderate heat stress, daily standing time may increase by around 3 hours per day. Heat abatement through the provision of shade, application of fans to move air over the stalls, alleys and parlor holding area, and soaking the cows with water are essential strategies to reduce the deleterious effects of heat on the cow.

5. Prolonged Lock-Up Times

It is ironic that the cow most susceptible to prolonged time spent in lock-ups; the fresh cow, is the cow that we restrain the most for daily health checks on farms. Provided daily lock up is limited to around 1-2 hours, cows may compensate for this loss of resting time. However, lock up times of 2 hours or more cannot be compensated for and will result in a reduction in resting time per day.

Factors Influencing Hoof Wear and Trauma

The surface that the cow must stand and walk on may influence lameness in one of three ways—through trauma, wear, and concussion.

- Surfaces that are excessively rough and uneven may traumatize the sole and the white-line, making claw horn lesions more likely. Very slippery surfaces may also traumatize the sole, especially where cows must make sharp turns. The area of the sole most susceptible to trauma is the white line of the outer claw of the rear foot, two-thirds of the way back from the toe, as this is the area of maximum ground reaction force when the cow stands and walks. If the structure of the white line is compromised, it is common to see debris embedded in the sole in this location.

- Where cows must walk long distances over concrete surfaces, excessive sole wear becomes an issue making the hoof more susceptible to claw horn lesion development.

- Lame cows are most susceptible to the hardness of the surface. Concussion created by walking on hard unforgiving surfaces makes lame cows in particular modify their
Cow Comfort continued

- The stocking density in the pen
 As we increase the number of cows per unit area of pen, we increase the amount of manure the feet are exposed to.

- The layout of the pen and the width of the alleys
 Pens with 3 rows of stalls have 20% less alley surface area per cow than 2 row pens, increasing the concentration of manure in the environment.

- The slope of the alleys
 Alleys should slope 1-2% to assist drainage of urine and rainfall.

- The consistency of the manure
 High yielding lactating cows have looser manure than non-lactating cows, creating more leg hygiene problems.

Factors Influencing Foot and Leg Hygiene

Leg hygiene of cows in free stall barns is poor compared to cows at pasture or dirt lots (provided that the weather is favorable) and cows housed in tie stall systems. Time spent outside the stall is spent in the alleys and manure accumulation and contamination is a significant problem. The extent of manure contamination and the degree to which it will influence infectious hoof disease will be determined by:

- The frequency of manure removal
 Manure should be removed from the pen at least 3 times per day, preferably when the cows are outside the pen.

- The mechanism of manure removal
 Correctly managed slatted floor pens improve leg hygiene, but often traumatize the sole. Automated scrapers operating with the cows still in the pen only serve to coat the foot with manure and increase problems.

Using a 4-point system of leg hygiene scoring, where 1=clean, 2=splashes, 3=plaques but hair visible and 4=plaques and no hair visible, the best free stall herds will have around 25% of cows scoring ‘too dirty’ (scores 3 and 4), with average herds scoring 55%. The limb hygiene scoring system used is shown below.

HOOF AND LEG HYGIENE SCORING CHART

Score at least 20% of the cows in each pen in a free stall herd or all of the cows in a tie stall herd

<table>
<thead>
<tr>
<th>SCORE 1</th>
<th>SCORE 2</th>
<th>SCORE 3</th>
<th>SCORE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean, little or no manure contamination of the lower limb</td>
<td>Slightly dirty, where the lower limb is lightly splashed with manure</td>
<td>Moderately dirty, where there are distinct plaques of manure on the foot, progressing up the limb</td>
<td>Very dirty, where there are confluent plaques of caked-on manure on the foot and higher up the lower limb</td>
</tr>
</tbody>
</table>

Conclusion

The aspects of cow comfort that influence herd lameness are related to increased time spent standing, the nature of the standing surface and the hygiene of that surface. A systematic review of each of these factors is appropriate when presented with a herd lameness problem. AABP